

CCC 6/INF.17 Sample application of IEC60079-10-1:2015 on a fuel cell power installation

Dipl.-Ing. Keno Leites, thyssenkrupp Marine Systems GmbH CCC 6, IMO, London, 10 September 2019

e4ships – fuel cells in maritime applications

IEC 60079-10-1:2015 Classification of areas – Explosive gas atmospheres

Definitions

Zone 0	an area in which an explosive gas atmosphere is present continuously or for long periods or frequently				
Zone 1	an area in which an explosive gas atmosphere is likely to occur periodically or occasionally in normal operation				
Zone 2	an area in which an explosive gas atmosphere is not likely to occur in				
	normal operation but, if it does occur, it will occur for a short period only				

IEC 60079-10-1:2015 Classification of areas – Overall methodology

=

Dipl.-Ing. Keno Leites, thyssenkrupp Marine Systems GmbH

IEC 60079-10-1:2015 Classification of areas – Example SchIBZ™

Sources of release*

* Here fuel cell stacks are within an enclosed atmosphere due to an additional physical barrier. They are not considered a source of release due to the high temperatures inside the enclosed fuel cell modules, which is above the lower flammable limit of all substances involved.

=

Dipl.-Ing. Keno Leites, thyssenkrupp Marine Systems GmbH

4

IEC 60079-10-1:2015 Classification of areas -**Example SchIBZ**[™]

IEC 60079-10-1:2015 Classification of areas – Example SchIBZ™

- Highest calculated release characteristic is 0.23 m³/s for Hydrogen
- Mean ventilation velocity is 0.15 m/s
- Availability of ventilation is considered good

	Grade of release	Effectiveness of Ventilation							
		High Dilution			Medium Dilution			L.ow Dilution	
		Availability of ventilation							
		Good	Fair	Poor	Good	Fair	Poor	Good, fair or poor	
	Continuous	Non-hazardous (Zone 0 NE) ^a	Zone 2 (Zone 0 NE) ^a	Zone 1 (Zone 0 NE) ^a	Zone 0	Zone 0 ÷ Zone 2	Zone 0 + Zone 1	Zone 0	
	Primary	Non-hazardous (Zone 1 NE) ^a	Zone 2 (Zone 1 NE) ^a	Zone 2 (Zone 1 NE) ^a	Zone 1	Zone 1 + Zone 2	Zone 1 + Zone 2	Zone 1 or zone 0°	
	Secondary ^b	Non-hazardous (Zone 2 NE) ^a	Non-hazardous (Zone 2 NE) ^a	Zone 2	Zone 2	Zone 2	Zone 2	Zone 1 and even Zone 0°	

Dipl.-Ing. Keno Leites, thyssenkrupp Marine Systems GmbH

IEC 60079-10-1:2015 Classification of areas – Example SchIBZ™

IEC 60079-10-1:2015 Classification of areas – Example SchIBZ™

Conclusion

- As a result of IEC 60079-10-1:2015 the fuel cell space contains a limited zone 2
- The remaining space is non hazardous
- Application of IEC 60079-10-1:2015 ensures the goal of equal safety of the system compared to conventional systems by reviewing all potential sources of release and the ventilation at a local level

IEC 60079-10-1:2015 Classification of areas – CFD-calculation of 25% LEL surface

Thank you

www.e4ships.de

-